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Abstract 

The basal body is a highly organized structure essential for the formation of cilia. Basal bodies dock to a cellular mem-
brane through their distal appendages (also known as transition fibers) and provide the foundation on which the 
microtubules of the ciliary axoneme are built. Consequently, basal body position and orientation dictates the position 
and orientation of its cilium. The heart of the basal body is the mother centriole, the older of the two centrioles inher-
ited during mitosis and which is comprised of  nine triplet microtubules arranged in a cylinder. Like all ciliated organ-
isms, mice possess basal bodies, and studies of mouse basal body structure have made diverse important contribu-
tions to the understanding of how basal body structure impacts the function of cilia. The appendages and associated 
structures of mouse basal bodies can differ in their architecture from those of other organisms, and even between 
murine cell types. For example, basal bodies of immotile primary cilia are connected to daughter centrioles, whereas 
those of motile multiciliated cells are not. The last few years have seen the identification of many components of the 
basal body, and the mouse will continue to be an extremely valuable system for genetically defining their functions.
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The organism: Mus musculus
The house mouse Mus musculus is the vertebrate most 
widely used in biomedical research. The long history of 
mouse genetics, building off of the work of Victorian 
mouse fanciers and amplified by the development of 
both forward and reverse genetic approaches, has pro-
vided a rich, tractable and powerful set of genetic tools in 
mouse [1]. As we share 99% of our genes with mice, they 
are useful for modeling many aspects of human basal 
body function. For example, some ciliopathies, such as 
primary ciliary dyskinesia (PCD) and Meckel syndrome 
(MKS), are well modeled by mouse mutations in orthol-
ogous genes [2–4]. However, other ciliopathies such as 
nephronophthisis (NPHP) and Joubert syndrome (JBTS) 
are imperfectly recapitulated with existing mouse muta-
tions [5–9]. As the ability to humanize portions of the 
mouse genome and create tailored mutations increases, it 
may be possible to more accurately model complex phe-
notypes related to cilia and basal bodies.

Murine basal body structure
Murine basal bodies contain triplet microtubules
The nine triplet microtubules that make up the barrel 
of the basal body are named A, B, and C from internal 
to external. As with all centrioles, the plane of the tri-
plet microtubules is tilted such that the vector from the 
A-tubule to the C-tubule, if viewed from the proximal 
end of the centriole, points counterclockwise [10, 11]. 
The doublet microtubules of the ciliary axoneme are con-
tiguous with the basal body A- and B-tubules, whereas 
the C-tubule terminates within the distal centriole or in 
a region between the basal body and the cilium called the 
transition zone [12–16].

Different murine cell types display different basal body 
architectures
Distinct types of mouse cells possess structurally and 
functionally distinct types of cilia. The principal types of 
cilia are immotile primary cilia that can interpret inter-
cellular signals, highly modified signaling cilia such as 
the photoreceptor connecting cilium, motile nodal cilia 
involved in left–right axis determination, immotile mul-
ticilia of the olfactory receptor neurons, motile multicilia 
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that move fluid in the lung, brain ventricles and fallopian 
tubes, and the sperm flagellum.

While it is unclear whether basal bodies of distinct 
types of cilia contain sets of proteins unique to that cili-
ary type, the structure of the cilium itself can vary in 
ways that may be dependent on the basal body [17]. One 
example is the transition zone, a region between the basal 
body and cilium characterized by Y-fibers connecting 
the microtubules to the ciliary membrane. The transition 
zone can be short, such as in fibroblasts, or long, such as 
in photoreceptors.

Many motile cilia, such as those of tracheal and epend-
ymal cells, have a central pair of microtubules in addi-
tion to the nine doublets of the axoneme (the so-called 
9 + 2 arrangement of microtubules). Mutations in mouse 
Hydin, which encodes a protein associated with the cen-
tral pair microtubules, causes defects in ciliary bending 
and beat frequency, suggesting that the central pair is 
critical for normal ciliary motility [18, 19].

However, not all motile cilia have a central pair. For 
example, most nodal cilia lack the central pair [20]. Con-
sistent with the absence of the central pair in nodal cilia, 
human HYDIN mutations affect the motility of the cilia 
of the respiratory tract but do not cause left–right axis 
defects [21]. Conversely, not all 9 +  2 cilia are motile. 
Olfactory sensory neurons possess 9 + 2 cilia, but not the 
dynein arms required for ciliary motility [22].

Unlike the peripheral axonemal microtubules, the cen-
tral pair microtubules are not continuous with microtu-
bules of the basal body: they arise in the transition zone 
distal to the basal body. How the basal body influences 
whether the axoneme possesses the central pair remains 
unclear, but, at least in invertebrates, central pair forma-
tion depends on basal body components such as BLD10/
CEP135 [17].

The mouse δ‑ and ε‑tubulin genes
Consistent with the proposed link between δ- and 
ε-tubulin and the presence of triplet microtubules in 
centrioles, the mouse genome contains orthologs of the 
genes encoding δ- and ε-tubulin, Tubd1 and Tube1 [23, 
24]. In Chlamydomonas, δ-tubulin is essential for the 
production of two and only two flagella and the produc-
tion of triplet microtubules in the basal body: mutants 
lack the C-tubule [25]. Chlamydomonas  ε-tubulin is 
critical for basal body formation or maintenance and 
is required for the formation of both basal body dou-
blet and triplet microtubules [26]. In mammalian cells, 
δ-tubulin localizes to the spindle poles and co-immuno-
precipitates with γ-tubulin, and ε-tubulin localizes to the 
subdistal appendage of the basal body [27, 28]. Answer-
ing the question of whether the function of mouse 

δ- and ε-tubulin is similar or distinct from that in Chla-
mydomonas awaits functional genetic analysis.

Accessory structures of mouse basal bodies
Murine basal bodies are accompanied by, depending on 
the phase of the cell cycle and cell type, either no (in the 
instances of sperm and multiciliated cells), one (mono-
ciliated cells in G1, G0, or early S phase), or three (mon-
ociliated cells in late S or G2 phase) centrioles [29, 30]. 
During G1 phase of most ciliated cells, the proximal 
end of the basal body is connected to the proximal end 
of the daughter centriole by a linkage, and the daughter 
centriole is oriented roughly orthogonally to the basal 
body [31]. In contrast, the basal bodies of motile multi-
ciliated cells are not physically associated with daughter 
centrioles, although the daughter centrioles do have cru-
cial roles in the generation of the many basal bodies pos-
sessed by these cells [32].

Basal bodies are surrounded by pericentriolar material. 
The pericentriolar material is comprised of proteins such 
as Pericentrin, appears moderately electron dense by 
EM, and nucleates the minus ends of many cytoplasmic 
microtubules [33–35]. On the periphery of the pericen-
triolar material exist large electron-dense protein com-
plexes called centriolar satellites involved in ciliogenesis 
and centriole duplication [36–38].

Mouse basal body appendages
Murine basal bodies possess a variety of appendages, 
including a rootlet, distal appendages, and subdistal 
appendages or a basal foot. Indeed, the basal body is 
distinguished from daughter centrioles and procentri-
oles by the presence of these appendages. The relation-
ship of subdistal appendages to the basal foot is unclear. 
Both project from the sides of the basal body at nearly 
the same position, approximately 350 nm from the proxi-
mal end of the basal body, and both are associated with 
microtubule nucleation [39, 40]. Basal bodies have up to 
nine subdistal appendages, but only one or two basal feet. 
The basal foot further differs from subdistal appendages 
in that it is larger and is more electron dense. Subdistal 
appendages and basal feet are mutually exclusive and 
have some of the same genetic requirements, suggesting 
that subdistal appendages may coalesce to form the basal 
foot [41]. During G2 phase, the subdistal appendages or 
basal foot are lost and do not reappear until the next G1 
phase [42, 43].

The nine distal appendages project outward from the 
distal end of the basal body and are required for mem-
brane docking and ciliogenesis [44–46]. Once the basal 
body docks to a membrane, distal appendages are often 
referred to as transition fibers. The distal appendages 
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possess Cep164, Cep89, Cep83, Fbf1, and Sclt1, and all 
five are involved in ciliogenesis, with Cep83 being specifi-
cally important for membrane docking [45, 46].

The rootlet is a thick (80–100  nm) striated bundle of 
filaments that projects from the proximal end of the basal 
body and extends close to the nucleus [47]. Striations 
orthogonal to the filament axis are present at intervals 
of  ~55–75  nm [47]. Rootlets are associated with basal 
bodies of both motile and immotile cilia, such as photo-
receptor cells. In this cell type, the rootlet extends from 
the outer segment, a highly specialized modified cilium, 
to the synaptic terminal at the opposite end of the cell 
[48, 49]. One component of the rootlet is Rootletin [47, 
50]. Consistent with the rootlet being dispensable for cili-
ary motility and signaling, a mutation in mouse Rootle-
tin (also known as Crocc) that disrupts rootlet formation 
does not abrogate ciliary beating or phototransduc-
tion [51]. However, this mutation causes photoreceptor 
degeneration and may reduce mucociliary clearance, sug-
gesting that mechanical support provided by the rootlet 
is essential for the long-term maintenance of ciliary func-
tion [51, 52].  

In addition to its function in the rootlet, Rootletin, 
together with C-Nap1, forms fibers that connect mother 
and daughter centrioles and may function in centrosome 
cohesion [31, 53, 54]. Mutations in the human homolog 
of C-Nap1, called CEP250 or CEP2, are associated with 
Usher syndrome, a disease characterized by retinitis pig-
mentosa and hearing loss [55]. In cattle, mutations in C-
Nap1 are associated with microcephaly, suggesting that 
the linker between mother and daughter centrioles plays 
important roles in neural development in mammals [56].

Noteworthy EM studies of mouse basal bodies
Many investigators have analyzed both rodent and other 
vertebrate basal bodies, thereby revealing that the basal 
bodies of vertebrates are highly similar. For example, 
Sergei Sorokin described the formation of primary cilia 
in rat tissue and organ cultures of chicken duodenum 
[57]. In addition, he and Ronald Gordon defined the 
ultrastructure of motile cilia in the rat lung [58, 59]. Ellen 
Dirksen examined the structure of basal bodies in the 
mouse fallopian tube [60]. Wilsman et al. [44] performed 
serial EM studies of primary cilia in chondrocytes. The 
micrographs of serial sections in chondrocytes show 
with remarkable clarity the relative orientation of the 
transition fibers, the basal foot, and the triplet microtu-
bules. More recently, Kazuhiro et al. performed electron 
tomographic studies demonstrating the role of Odf2 in 
the formation of distal and subdistal appendages [39]. 
The electron tomograms nicely show the ultrastruc-
ture of the basal body appendages in three dimensions 
(Fig. 1).

Early studies identifying basal body features
The basal foot was described in 1954 by Fawcett and Por-
ter as “a small process” extending from the anterior face 
of the amphibian basal body [61]. In rodents, Rhodin and 
Dalhamn in 1956 identified the basal foot as a “cytoplas-
mic process” on basal bodies in rat tracheal epithelial 
cells [62]. By 1961, the term basal foot was used by Gib-
bons in his studies of cilia in the gills of the freshwater 
mussels [10]. In mouse embryonic fibroblasts, Wheatley 
identified the basal foot in 1969 [63].

The transition fibers were identified later than the basal 
foot. In 1972, Anderson identified transition fibers in 
mammalian fallopian tube cells, referring to them as “alar 
sheets” [64]. Surprisingly, the ciliary rootlet was identi-
fied before the advent of electron microscopy: Friedreich 
and Engelmann identified the ciliary rootlet using histo-
logical methods in the nineteenth century [61, 65, 66].

Origins of mouse basal bodies
Most basal bodies of cycling mouse cells, including many 
cells with primary cilia, are derived from mother centri-
oles inherited during mitosis [67]. Most basal bodies of 
non-cycling multiciliated cells are built from an elec-
tron-dense organelle called the deuterosome [32, 68]. 
Interestingly, it is the daughter centriole, not the mother 
centriole, that contributes to formation of the deutero-
some [32].

In stark contrast to later phases of development, mouse 
cells lack centrioles during the first few cleavages fol-
lowing fertilization [69]. Despite the absence of centri-
oles, these early mouse blastomeres form and organize 
microtubules [70]. The pericentriolar material unas-
sociated with centrioles may serve as the source of the 
MTOC activity in these cells [71, 72]. In particular, Plk4 
and Cep152 can localize to an acentriolar MTOC to help 
organize microtubules [73].

Centrioles do not arise during development until the 
early blastocyst stage, indicating that these embryonic 
mouse cells must build centrioles de novo [74, 75]. The de 
novo synthesis of centrioles in human cells is error prone, 
suggesting that the cell’s ability to construct a structur-
ally accurate centriole may be facilitated by the existence 
of a pre-existing centriole [76]. Loss of mouse Sas4 (also 
called Cenpj) disrupts formation of centrioles, basal bod-
ies, and cilia, but does not halt cell cycle progression or 
embryonic development until midgestation, indicating 
that, despite their genesis early in development, they are 
not essential for some forms of cell division [77].

During development and in adult tissues, all ciliated cells 
have basal bodies
In cycling cells, the basal body becomes a mother cen-
triole after the cilium is disassembled. This former basal 
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body serves as a part of a spindle pole during mitosis, and 
thus mitosis can be considered a phase of the cell cycle 
during which basal bodies do not exist. Although mouse 
cells disassemble their cilia before entering mitosis, a het-
erozygous mutation in Pifo can cause mouse cells to retain 
a ciliary remnant into mitosis (although it may no longer 
be physically associated with the basal body) and, perhaps 
consequently, can cause mitotic defects [78]. Multiciliated 
cells are terminally differentiated and thus possess basal 
bodies during their entire lifetimes [79].

Basal body contribution to microtubule‑organizing 
center (MTOC) activity
In addition to supporting ciliogenesis, the basal body 
contributes to MTOC activity although, as mentioned 
above, it is not essential for MTOC activity. Many micro-
tubules are anchored in the pericentriolar material itself, 

but the subdistal appendages and subdistal appendage 
proteins, such as Ninein and the Dynactin complex, are 
also implicated in anchoring microtubules [35, 80–85]. 
How the function of microtubules originating from the 
pericentriolar material and those attached to the subdis-
tal appendages or basal foot differs will be interesting to 
determine.

Identification of mouse basal body components
A handful of proteomics and genomics screens have iden-
tified many mouse basal body components and identified 
many other candidate components. A transcriptomic 
study of mouse tracheal epithelial cells (mTECs) during 
ciliogenesis has identified more than 600 genes that are 
upregulated during early ciliogenesis [86]. Reflecting the 
genesis of both basal bodies and cilia during mTEC dif-
ferentiation, these upregulated genes include those that 

Fig. 1  Basal body ultrastructure. At the distal end of the basal body, distal appendages or transition fibers are blades that have ninefold symme-
try and radiate outward from the triplet microtubules. Proximal to the distal appendages is the basal foot, an electron-dense and cone-shaped 
structure projecting from one side of the basal body. Some basal bodies have multiple basal feet. The proximal end of the basal body is attached to 
the striated rootlet and to filaments that connect the basal body to the proximal end of the daughter centriole. Motile cilia in multiciliated cells lack 
associated daughter centrioles. Image credits: serial-section electron micrographs of transition fibers, the basal foot, and proximal basal body were 
originally published in [44]. Electron micrograph illustrating the striated rootlet and the daughter centriole was originally published in [14]
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encode ciliary and basal body proteins, and thus has been 
a boon for the identification of basal body components.

To identify genes involved in basal body and ciliary 
biology, targeted and genome-wide knockdown screens 
have been performed in mouse cells that possess primary 
cilia [87, 88]. Knockdown of these genes, or ortholo-
gous genes in human cells, can result in a variety of phe-
notypes, including loss of cilia, short cilia, long cilia, as 
well as ciliary transport defects in the absence of obvi-
ous structural defects [87–89]. The cell biological origin 
of these phenotypes and whether the associated gene 
products act at the cilium, the basal body, or elsewhere 
remains to be elucidated in most cases.

The proteome of the mouse photoreceptor sensory 
cilium complex, an isolated preparation containing the 
axonome, the basal body, and the ciliary rootlet of the 
photoreceptor outer segment, has identified over 1000 
candidate ciliary proteins [90]. In addition to studies in 
mouse cells, proteomic and genomic screens have identi-
fied novel basal body and ciliary components in human 
and rat cells [91–93]. For example, mass spectrometry-
based proteomics analysis of centrosomes and centroso-
mal protein interactors has identified novel centrosomal 
proteins, many of which have functions relevant to basal 
bodies [94–97]. Given the close evolutionary relationship 
between mice and other mammals, the mouse orthologs 
of the proteins identified in such screens are likely to 
inform mouse basal body biology.

Two independent comparative genomics studies 
focused on identifying genes involved in ciliary biol-
ogy. Comparison of the gene complement of unciliated 
organisms with those of ciliated organisms identified 
genes involved in ciliogenesis and ciliary function [91, 
98]. Although these computational approaches do not 
discriminate between genes encoding basal body and cili-
ary proteins, a subset is likely to encode components of 
the basal body. For example, both studies implicated the 
basal body component Sas4 as being specific to ciliated 
organisms.

Notable basal body findings made using mice
Genetic studies in mice have been especially useful in 
determining the physiological functions of basal bodies. 
In most instances, a single mutant allele exists, providing 
important but limited insight into basal body function. 
In select cases, an allelic series provides more nuanced 
insight into the full range of basal body functions. For 
example, a hypomorphic mutation indicates that Odf2 
mediates the orientation of basal feet, and proper polari-
zation of basal feet is required for polarity of the ciliary 
beat in tracheal epithelial cells [99]. A stronger allele 
reveals that Odf2 is also essential for formation of the 
transition fibers and basal feet [39].

Like Odf2, Chibby homolog 1 (Cby1), a protein that 
localizes to the distal centriole, aids in docking of the 
basal body to the plasma membrane and is essential for 
mucociliary clearance in the airway epithelium [100–
102]. One important function of Cby1 is in the recruit-
ment of Ahi1 to the transition zone [101]. Understanding 
how Cby1, Odf2, and other basal body proteins orient the 
basal body to provide effective mucociliary clearance will 
provide insights into how ciliary orientation and motive 
force are achieved.

Other studies have helped illuminate how the distal 
centriole functions in ciliogenesis. For example, genetic 
and cell biological studies on mouse C2cd3 have demon-
strated that it localizes to centriolar satellites, as well as 
to the distal end of centrioles, and that C2cd3 is required 
for formation of the distal appendages and for ciliary ves-
icle docking to the mother centriole [103, 104]. Loss of 
C2cd3 blocks removal of Cp110 from, and recruitment of 
Ttbk2, to the mother centriole, early steps in the initia-
tion of ciliogenesis [104, 105]. Loss of C2cd3 also blocks 
recruitment of Ift88 and Cep164 to the distal append-
age of the mother centriole [104]. Mouse C2cd3 mutants 
display phenotypes reminiscent of human ciliopathies, 
including severe polydactyly, situs defects, and disruption 
of the dorsal–ventral patterning of the neural tube [106]. 
Hedgehog signaling is disrupted in these mice, reflecting 
the essential function for cilia in transducing vertebrate 
Hedgehog signals [106]. Ofd1, a protein mutated in oral-
facial-digital syndrome, co-localizes with C2cd3 at the 
distal centriole [103]. Whereas depletion of C2cd3 leads 
to shorter centrioles and the loss of the distal append-
ages, mutation of Ofd1 leads to centriole hyperelongation 
[103].

Another protein that localizes to the distal end of cen-
trioles, Talpid3, interacts with Cp110 and regulates cili-
ogenesis [107–109]. Talpid3 mutant mice lack primary 
cilia, and have situs, neural tube, and facial defects [107, 
110]. Taken together, these results indicate that the dis-
tal centriole appears to be an important locale where a 
complex of proteins coordinates with Cp110 to initiate 
ciliogenesis.

EHD1 and EHD3 are yet additional distal centriole 
proteins that are required for ciliary genesis. EHD1 is 
involved in ciliary vesicle formation and the removal of 
Cp110 [111, 112]. Future investigation of potential cen-
triole “capping” proteins, as well as other proteins that 
regulate centriole length, will help reveal how architec-
ture varies in different cell types to promote the diverse 
functions of the basal body.

Genetic studies have the advantage of having the 
capacity to identify regulatory inputs that do not directly 
involve basal body components, or even protein-coding 
genes. For example, the microRNAs miR-34/449 may 
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promote the biogenesis of motile cilia by repressing 
Cp110 [113]. Consequently, mutant mice lacking these 
microRNAs are infertile and display defective mucocili-
ary clearance [113].

Strengths and future of basal body research in Mus 
musculus
Due to the organism’s genetic tractability, the mouse 
is the most commonly used experimental organism to 
study vertebrate development and to model human dis-
ease. One of the strengths of the mouse as an experimen-
tal organism is the ability to tailor the genome, a strength 
that is growing as a new generation of genetic tools 
becomes widely used. Genes required for basal body 
formation or function can be mutated, and phenotypes 
can be analyzed in a wide range of cell types with a wide 
variety of ciliary types, illuminating the function of basal 
bodies in development, physiology, and disease.

Another strength of the mouse as a model organism 
is the breadth of research tools available. For example, 
there are many antibodies available for the detection of 
basal body and ciliary proteins. A weakness of the mouse 
is the difficulty in acquiring sufficient material for some 
approaches, such as the proteomics of basal bodies in 
specific cell types.

Future prospects for research on basal bodies in the 
mouse are diverse. How is duplication of the basal body 
controlled in primary ciliated and multiciliated cells? 
What role do basal bodies have in transducing develop-
mental cues, such as Hedgehog signals? How do basal 
bodies interact with the planar cell polarity pathway 
to control the orientation of the motile cilia that move 
external fluids? Genetic modeling of basal body-associ-
ated diseases, such as ciliopathies, in mice will continue 
to help identify the cell biological origins of human dis-
ease, but also will illuminate the diverse functions of 
basal bodies in fundamental cellular processes such as 
ciliogenesis, ciliary motility, centriole duplication, and 
microtubule organization.
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